Extensions of Simple Modules and the Converse of Schur’s Lemma
نویسنده
چکیده
The converse of Schur’s lemma (or CSL) condition on a module category has been the subject of considerable study in recent years. In this note we extend that work by developing basic properties of module categories in which the CSL condition governs modules of finite length.
منابع مشابه
Perfect Rings for Which the Converse of Schur’s Lemma Holds
If M is a simple module over a ring R then, by the Schur’s lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones.
متن کاملA basic note on group representations and Schur’s lemma
Here we look at some basic results from group representation theory. Moreover, we discuss Schur’s Lemma in the context of R[G]-modules and provide some specialized results in that case.
متن کاملInert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules
Introduction Suppose that is a commutative ring with identity, is a unitary -module and is a multiplicatively closed subset of . Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was gener...
متن کاملA simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کامل